Math 115

Fall 2018
Lecture 8
$? a^{2}+b^{2}=c^{2} ?$
$y=m x+b d=r t$

Feb 19-8:47 AM

Some Review:
(1) Simplify: $\frac{2 \frac{1}{3}-3 \frac{1}{2}}{1 \frac{5}{6}}=\frac{\frac{7}{3}-\frac{7}{2}}{\frac{11}{6}}=\frac{6 \cdot \frac{7}{3}-6 \cdot \frac{7}{2}}{6 \cdot \frac{11}{6}}$
LCD $=6$
$=\frac{14-21}{11}=\frac{-7}{11}$
(2) Evaluate $-b-\sqrt{b^{2}-4 a c}$ for $a=2, b=5$, and $C=-3$
$=-5-\sqrt{5^{2}-4(2)(-3)}=-5-\sqrt{25-4(2)(-3)}$
$=-5-\sqrt{25+24}=-5-\sqrt{49}=-5-7=-12$
(3) Simplify: $3\left(2 x^{2}-5 x+\frac{1}{3}\right)-2\left(3 x^{2}-7 x+\frac{1}{2}\right)$
$=3\left(2 x^{2}\right)-3(5 x)+3 \cdot \frac{1}{3}-2\left(3 x^{2}\right)+2(7 x)-2 \cdot \frac{1}{2}$
$=6 x^{2}-15 x+1-6 x^{2}+14 x-1=-1 x=-x$
(4) Name the properties:

$$
(5+x)-5=(x+5)-5 \quad \text { Commutative }
$$

$$
=x+(5-5) \quad \text { Associative }
$$

$$
\begin{aligned}
& =x+0 \\
& =x
\end{aligned}
$$

Inverse
Identity
(5) Translate only: 3 times the Sum of x^{2} and 8 is equal to x less -8 .

$$
3 \cdot\left(x^{2}+8\right)=x-(-8)
$$

(6) The ratio of $2 x-3$ to $3 x+2$ is the same as the ratio of $2 t_{0} 3$. find $x . \quad 3(2 x-3)=2(3 x+2)$

$$
\begin{array}{lc}
\begin{array}{ll}
\frac{2 x-3}{3 x+2}=\frac{2}{3} & \begin{array}{c}
6 x-9=6 x+4 \\
-9
\end{array} \\
\text { Cross-multiply } & \text { false }
\end{array} \rightarrow \text { NO Solution } \\
\Phi
\end{array}
$$

(7) what percent of 400 is 74?

$$
\begin{aligned}
& \frac{P}{100}=\frac{P \text { art }}{\text { whole }} \quad \frac{P}{100}=\frac{74}{400} \\
& 18.5 \% \text { of } 400 \text { is 74. }
\end{aligned}
$$

$$
\left.\begin{array}{c}
\text { (8) Solve: } 4(x-3)+6 x+2=5(2 x-1)-5 \\
4 x-12+6 x+2=10 x-5-5 \\
10 x-10=10 x-10
\end{array}\right) \begin{gathered}
10 x-10 x=-10+10 \\
0=0
\end{gathered}
$$

(9) Solve: $\frac{3}{5} x-\frac{1}{2}=\frac{1}{2} x-\frac{4}{5}$ infinite $*$ of solutions R LCD $=10$ Identity
$2 \cdot 3 x-5 \cdot 1=5 \cdot 1 x-2.4$ $x=-3$
Conditional
(10)

$$
\begin{aligned}
& 2.5 x+18=-1.5 x+13 \\
& 2.5 x+1.5 x=13-18 \quad\left\{\frac{-5}{4}\right\} \\
& 4 x=-5 \\
& x=\frac{-5}{4} \quad, x=-1 \frac{1}{4} \quad x=-1.25
\end{aligned}
$$

(11) 4 times the difference of Some number and 8 is equal to 20 less than twice the number. find square of the number. $4(x-8)=2 x-20$ Let x be the $4 x-32=2 x-20$
$4 x-2 x=-20+32$
$2 x=12$ Square of the

The number is 6.

$$
x=6
$$ number is 36 .

(12) Raul has 53 Coins. Dimes है Nickels on tY.

The \# of dimes is 1 fewer than two times The $\#$ of nickels. \quad Dime $=2 \cdot$ Nickel -1
(1) How many of each does he have?
(2) How much money does he have?

Nov 1-6:49 AM

Solve, give answer in all methods discussed in class
(13)

$$
\begin{aligned}
&-3(x+2)+4>2(4+x)-6 \\
&-3 x-6+4>8+2 x-6 \\
&-3 x-2>2 x+2 \\
&-3 x-2 x>2+2 \\
&-5 x>4
\end{aligned} \quad\left\{\begin{array}{l}
x<\frac{4}{-5} \\
x<-.8 \\
\text { OS.B.N. } \\
\{\mid x<
\end{array}\right.
$$

$$
\text { (14) }-8 \leq 2 x+4<14
$$

$$
-8-4 \leq 2 x<14-4
$$

$$
-12 \leq 2 x<10
$$

$$
-6 \leq x<5
$$

$$
\begin{aligned}
& \underbrace{\text { Dimes }}+\underbrace{\text { Nickels }}=53 \text { Coins } \begin{array}{l}
x \rightarrow \text { Nickels } \\
2 x-1 \rightarrow \text { Dimes }
\end{array} \\
& 2 x-1+x=53 \quad \longrightarrow x=18 \\
& 3 x=54 \\
& 18(5 \$)+35(10 \$) \\
& =90 \$+350 \$ \\
& =440 \$=\$ 4.40 \\
& \begin{array}{c}
18 \text { nickels } \\
\& \\
35 \text { Dimes }
\end{array}
\end{aligned}
$$

(15) Solve for $h: \quad A=\frac{h(B+b)}{2}$
multiply by 2

$$
\begin{aligned}
& \text { multiply by 2 } \\
& \left.2 A=h(B+b) \quad \frac{2 A}{B+b}=\frac{h(B+b)}{B+b} \quad h=\frac{2 A}{B+b}\right)
\end{aligned}
$$

(16) Solve for y : $6 \vec{x}-5 y=10$

$$
\begin{aligned}
& -5 y=-6 x+10 \\
& \frac{-5}{-5} y=\frac{-6}{-5} x+\frac{10}{-5}
\end{aligned} \quad \square y=\frac{6}{5} x-2
$$

(17) Solve for y : $8 x-2 y+8 \leq 2 x+3 y-2$

$$
\begin{aligned}
& -2 y-3 y \leq 2 x-2-8 x-8 \\
& -5 y \leq-6 x-10 \\
& \frac{-5}{-5} y \geq \frac{-6}{-5} x-\frac{10}{-5}
\end{aligned} \quad \square y \geq \frac{6}{5} x+2
$$

find two consecutive integers such that 5 times the smaller one reduced by 3 times the larger one is equal to 43.

$$
\begin{array}{ll}
x \& x+1 \quad & \text { Smaller } \rightarrow x \\
& \text { Larger } \rightarrow x+1
\end{array}
$$

5. Smaller - 3. larger $=43$

$$
\begin{gathered}
5 x-3(x+1)=43 \\
5 x-3 x-3=43 \\
2 x=46
\end{gathered} \quad \begin{aligned}
& x=23 \\
& 23 \text { \& } 24
\end{aligned}
$$

find two consecutive even integers
Such that 4 times the larger one is equal to 610 less 3 times the smaller one.

$$
\begin{aligned}
x \xi x+2
\end{aligned} \quad \begin{array}{r}
4 \cdot \text { larger }=610-3 \cdot \text { smaller } \\
x \text { must be } \\
\text { even }
\end{array} \quad \begin{aligned}
4(x+2) & =610-3 \cdot x \\
4 x+8 & =610-3 x \\
4 x+3 x & =610-8 \\
7 x & =602 \\
x & =86
\end{aligned}
$$

find two consecutive odd integers such that the sum of 5 times smaller one and 187 is equal to 8 times the larger one.

$$
\begin{aligned}
& x \leqslant x+2 \quad 5 \cdot \text { Smaller }+187=8 \cdot \text { larger } \\
& x \text { must be } 5 x+187=8(x+2) \\
& \text { odd } \quad 5 x+187=8 x+16 \\
& 5 x-8 x=16-187 \\
& 57 \text { غ } 59 \\
& -3 x=-171 \\
& x=\frac{-171}{-3} \quad x=57
\end{aligned}
$$

The three angles in triangle $A B C$ are three consecutive integers. find the Largest angle. FACT: $A+B+C=180^{\circ}$

$$
\begin{gathered}
x+x+1+x+2=180 \\
3 x+3=180 \\
3 x=177 \\
x=59
\end{gathered}
$$

The largest angle is 60°

Three angles of triangle $A B C$ are three consecutive odd integers. Find the smallest

x must be odd

FACT: $\quad A+B+C=180^{\circ}$

$$
\begin{gathered}
x+x+2+x+4=180 \\
3 x+6=180 \\
3 x=174 \\
\longrightarrow x=58
\end{gathered}
$$

No such triangle
exist.

Perimeter of a triangle is 48 in . One side is 3 times another side. The third side is 8 inches shorter than the Sum of other sides. Find the longest

Side.

Longest side is 21 in .

$$
\begin{gathered}
P=48 \\
a+b+c=48 \\
x+3 x+4 x-8=48 \\
8 x=56 \\
x=7
\end{gathered}
$$

The length of a rectangle is 4 ft longer than its width.
The sum of 4 times its width and 3 times its length is 89 ft .
find its perimeter.
4 width +3 length $=89$
$\frac{15 \mathrm{ft}}{\frac{11}{2+4}}$

$$
\begin{aligned}
4 x+3(x+4)=89 \\
4 x+3 x+12=89 \\
7 x=77
\end{aligned} \quad \begin{aligned}
& P=2 L+2 w \\
&=2(15)+2(11) \\
&
\end{aligned}
$$

Raul has 100 feet of fencing. He wants to build a dog run on the side of his barn. He wishes to have a rectangular dog run which is twice as long as it is wide. find the dimensions of this dog run.

Raul's Barn
$x \underbrace{\text { Dogrun }}_{2 x} \frac{\operatorname{Dan}^{2}}{}$
Barn

Total Fencing $=100 \mathrm{ft}$
No fence needed by the wall

$$
x+2 x+x=100
$$

$$
4 x=100
$$

$$
x=25
$$

Dimensions are 25 ft . by 50 ft .

Nov 1-9:02 AM
Agenda for Monday:

1) At 6:00 AM: collect up 5 \& 6 Collect SG 5, 6, and 7.
2) Lecture on New materials from 6:00 AM to 7:45 AM
3) Exam 1: $7: 45 \mathrm{AM}$ - ?
